cubic root - определение. Что такое cubic root
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое cubic root - определение

NUMBER WHICH PRODUCES A GIVEN NUMBER WHEN CUBED
Cubic root; Cube Root; Cube roots; Third root; ؆; Numerical methods for calculating cube roots
  • 1=''x'' = 0}} this graph has a [[vertical tangent]].
  • A002580}}).
Найдено результатов: 877
cube root         
n. to find, extract the cube root
Cube root         
In mathematics, a cube root of a number is a number such that . All nonzero real numbers, have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots.
cube root         
(cube roots)
The cube root of a number is another number that makes the first number when it is multiplied by itself twice. For example, the cube root of 8 is 2.
N-COUNT: usu sing, the N of n
cube root         
¦ noun the number which produces a given number when cubed.
McCay cubic         
  • McCay Cubic as the locus of P such that the pedal circle of P (circle P<sub>a</sub>P<sub>b</sub>P<sub>c</sub>) touches the nine point circle (circle DEF) of triangle ABC
  • McCay cubic with its three concurring asymptotes
McCay stelloid; Griffiths cubic; M'Cay cubic
In mathematics, in triangle geometry, McCay cubic (also called M'Cay cubic or Griffiths cubic) is a cubic plane curve in the plane of the reference triangle and associated with it, and having several remarkable properties. It is the third cubic curve in Bernard Gilbert's Catalogue of Triangle Cubics and it is assigned the identification number K003.
Cubic Hermite spline         
  • Cardinal spline example in 2D. The line represents the curve, and the squares represent the control points <math>\boldsymbol{p}_k</math>. Notice that the curve does not reach the first and last points; these points do, however, affect the shape of the curve. The tension parameter used is 0.1
  • Example with finite-difference tangents
  • The four Hermite basis functions. The interpolant in each subinterval is a linear combination of these four functions.
SPLINE WHERE EACH PIECE IS A THIRD-DEGREE POLYNOMIAL SPECIFIED IN HERMITE FORM: THAT IS, BY ITS VALUES AND FIRST DERIVATIVES AT THE END POINTS OF THE CORRESPONDING DOMAIN INTERVAL
Cubic spline; Cubic Hermite curve; Cubic Hermite curves; Cardinal spline; Catmull-Rom spline; Hermite curve; Hermite curves; Cubic interpolation; Cubic hermite spline; Catmull–Rom spline; Cspline; Catmull-Rom; Cubic Hermite Polynomial; Draft:Cubic interpolation
In numerical analysis, a cubic Hermite spline or cubic Hermite interpolator is a spline where each piece is a third-degree polynomial specified in Hermite form, that is, by its values and first derivatives at the end points of the corresponding domain interval.
root note         
  • Play}}
  • Play}}.
NOTE AFTER WHICH A CHORD IS NAMED
Root (music); Basse fondamentale; Root progression; Root note; Fundamental bass; Chord root; Five-three chord; Root chord; Assumed root; Absent root; Omitted root; Root-position; Basse fondementale; Son fondamentale; Harmonic root; Root of chord
¦ noun see root1 (sense 5).
rooted         
  • Roots forming above ground on a cutting of an ''Odontonema'' ("Firespike")
  • Aerial root
  • Fluorescent imaging of an emerging lateral root.
  • barley]] root
  • Coralloid roots of ''[[Cycas revoluta]]''
  • Cross section of a [[mango]] tree
  • Large, mature tree roots above the soil
  • Aerating roots of a [[mangrove]]
  • Roots on onion bulbs
  • Cross section of an adventitous crown root of pearl millet (''Pennisetum glaucum)''
  • Root system of adult ''[[Araucaria heterophylla]]''
  • Stilt roots of Maize plant
  • Ranunculus Root Cross Section
  • Roots of trees
  • The growing tip of a fine root
  • Roots can also protect the environment by holding the soil to reduce soil erosion
  • The stilt roots of ''[[Socratea exorrhiza]]''
  • Tree roots at [[Cliffs of the Neuse State Park]]
  • alt=
  • [[Ficus]] Tree with [[buttress root]]s
  • Visible roots
ORGAN OF A HIGHER PLANT THAT ANCHORS THE REST OF THE PLANT IN THE GROUND, ABSORBS WATER AND MINERAL SALTS FROM THE SOIL, AND DOES NOT BEAR LEAVES OR BUDS
Rooted; Root (botany); Tree root; Plant roots; Plant root; Shallow-rooted; Shallow rooted; Deep-rooted; Deep rooted; Peg root; Adventitious Root; Root (plant)
adj.
1) deeply rooted
2) rooted in (rooted in poverty)
3) rooted to (rooted to the spot)
rooted         
  • Roots forming above ground on a cutting of an ''Odontonema'' ("Firespike")
  • Aerial root
  • Fluorescent imaging of an emerging lateral root.
  • barley]] root
  • Coralloid roots of ''[[Cycas revoluta]]''
  • Cross section of a [[mango]] tree
  • Large, mature tree roots above the soil
  • Aerating roots of a [[mangrove]]
  • Roots on onion bulbs
  • Cross section of an adventitous crown root of pearl millet (''Pennisetum glaucum)''
  • Root system of adult ''[[Araucaria heterophylla]]''
  • Stilt roots of Maize plant
  • Ranunculus Root Cross Section
  • Roots of trees
  • The growing tip of a fine root
  • Roots can also protect the environment by holding the soil to reduce soil erosion
  • The stilt roots of ''[[Socratea exorrhiza]]''
  • Tree roots at [[Cliffs of the Neuse State Park]]
  • alt=
  • [[Ficus]] Tree with [[buttress root]]s
  • Visible roots
ORGAN OF A HIGHER PLANT THAT ANCHORS THE REST OF THE PLANT IN THE GROUND, ABSORBS WATER AND MINERAL SALTS FROM THE SOIL, AND DOES NOT BEAR LEAVES OR BUDS
Rooted; Root (botany); Tree root; Plant roots; Plant root; Shallow-rooted; Shallow rooted; Deep-rooted; Deep rooted; Peg root; Adventitious Root; Root (plant)
a.
Fixed, deep, radical, confirmed, established.
Cubic honeycomb         
  • 320px
  • 240px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 120px
  • 80px
  • 80px
  • 240px
  • 80px
  • 80px
  • 220px
  • 80px
  • 80px
  • 120px
  • 80px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 80px
  • 80px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 80px
  • 200px
  • 120px
  • 80px
  • 190px
  • 80px
  • 240px
  • The bitruncated cubic honeycomb shown here in relation to a cubic honeycomb
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 120px
  • 160px
  • 160px
  • 110px
  • 112px
  • 110px
  • 194px
  • 80px
  • 80px
  • 40px
  • 100px
  • 80px
  • 80px
  • 80px
  • 80px
  • 320px
  • 100px
  • 80px
  • 80px
  • 80px
  • 200px
  • 80px
  • 80px
  • 80px
  • 80px
  • 320px
  • 120px
  • 190px
  • 200px
  • 200px
  • 320px
  • 80px
  • 80px
  • 80px
  • 40px
  • 80px
  • 80px
  • 60px
  • 40px
  • 40px
  • 80px
  • 80px
  • 300px
  • 40px
  • 40px
  • 25px
  • 40px
  • 40px
  • 40px
  • 40px
  • 40px
  • 40px
  • 40px
  • 25px
  • 40px
ONLY REGULAR SPACE-FILLING TESSELLATION OF THE CUBE
Truncated cubic honeycomb; Rectified cubic honeycomb; Cantellated cubic honeycomb; Runcitruncated cubic honeycomb; Cantitruncated cubic honeycomb; Omnitruncated cubic honeycomb; Truncated square prismatic honeycomb; Snub square prismatic honeycomb; Runcinated cubic honeycomb; 3-cube honeycomb; Alternated cantitruncated cubic honeycomb; Regular cubic honeycomb; Runcicantellated cubic honeycomb; Runcinated cubic honycomb; D3 lattice; Snub rectified cubic honeycomb; Runcic cantitruncated cubic honeycomb; Alternated omnitruncated cubic honeycomb; Cubic cellulation; Rectified cubic cellulation; Truncated cubic cellulation; Cantellated cubic cellulation; Runcinated cubic cellulation; Cantitruncated cubic cellulation; Runcitruncated cubic cellulation; Omnitruncated cubic cellulation; Simo-square prismatic cellulation; Tomo-square prismatic cellulation; Quarter oblate octahedrille; Square quarter pyramidille; Triangular pyramidille; Order-3-4 square honeycomb; Cantic snub cubic honeycomb
The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation (or honeycomb) in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex.

Википедия

Cube root

In mathematics, a cube root of a number x is a number y such that y3 = x. All nonzero real numbers, have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. For example, the real cube root of 8, denoted 8 3 {\displaystyle {\sqrt[{3}]{8}}} , is 2, because 23 = 8, while the other cube roots of 8 are 1 + i 3 {\displaystyle -1+i{\sqrt {3}}} and 1 i 3 {\displaystyle -1-i{\sqrt {3}}} . The three cube roots of −27i are

3 i , 3 3 2 3 2 i , and 3 3 2 3 2 i . {\displaystyle 3i,\quad {\frac {3{\sqrt {3}}}{2}}-{\frac {3}{2}}i,\quad {\text{and}}\quad -{\frac {3{\sqrt {3}}}{2}}-{\frac {3}{2}}i.}

In some contexts, particularly when the number whose cube root is to be taken is a real number, one of the cube roots (in this particular case the real one) is referred to as the principal cube root, denoted with the radical sign     3 . {\displaystyle {\sqrt[{3}]{~^{~}}}.} The cube root is the inverse function of the cube function if considering only real numbers, but not if considering also complex numbers: although one has always ( x 3 ) 3 = x , {\displaystyle \left({\sqrt[{3}]{x}}\right)^{3}=x,} the cube of a nonzero number has more than one complex cube root and its principal cube root may not be the number that was cubed. For example, ( 1 + i 3 ) 3 = 8 {\displaystyle (-1+i{\sqrt {3}})^{3}=8} , but 8 3 = 2. {\displaystyle {\sqrt[{3}]{8}}=2.}